skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schunemann, Peter G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2026
  2. We demonstrate dramatic parametric amplifier conversion efficiency enhancement simply by arranging for simultaneously phase-matched idler second-harmonic generation, with 44% pump-to-signal energy conversion (68% pump depletion) in a 48-dB-gain bulk-crystal mid-IR amplifier stage with Gaussian beams. 
    more » « less
  3. For as widely used a tool as nonlinear optical frequency conversion is for both science and industry, it remains widely limited in eciency and bandwidth (and ultimately also in cost) due to the fundamental problem of backconversion in the nonlinear evolution dynamics. This review paper covers new developments and capabilities in frequency conversion devices, including optical up- and down-converters and ampli ers, based on nonlinear evolution dynamics in which back-conversion is suppressed. One such approach is adiabatic frequency conversion, in which the dynamics of rapid adiabatic passage replace the regular cyclic conversion evolution in phase-matched sum- and di erence-frequency generation. This approach has enabled devices far surpassing the conventional eciency-bandwidth trade-o . For example, in chirped quasi-phase matched quadratic crystals, microjouleenergy single-cycle mid-infrared pulses were generated with arbitrary pulse shaping capability, presenting a source with unique features for nonlinear spectroscopy and strong- eld physics applications. We review new developments in the use of optical bers as a cubic nonlinear platform for the same concept, utilizing a tapered core diameter or a pressure gradient to allow up- and down-conversion with ultra-wide bandwidth and high eciency. We also review a newly introduced concept for high eciency optical parametric ampli cation, via a novel approach for suppressing back-conversion in optical parametric ampli cation by simultaneously phasematching the idler wave for second harmonic generation. Keywords: Adiabatic wave mixing, ecient optical parametric ampli cation, octave-spanning 
    more » « less
  4. null (Ed.)